Summary

Michael Witherell HEPAP meeting April 26, 2002

Strategic Steps Toward our Scientific Goals *A Multi-Prong Approach*

? Elements of a Roadmap by Topic

- The Existing and Near- Term Program
- Theoretical Physics, Phenomenology and Data Analysis Theory
- ☐ The Energy Frontier Tevatron/CDF/D0 LHC/CMS
- ☐ Lepton Flavor Physics MiniBooNE NuMI/MINOS
- ☐ Quark Flavor Physics CDF/D0 BTeV CKM
- □ Unification Scale Physics
- □ Cosmology and Particle Physics SDSS CDMS
- ☐ High- Energy Particle- Astrophysics Auger

Ongoing Projects

Project	Total Project Cost	Dates
US-LHC	\$110 M	1997-2005
US-CMS	\$165 M	1998-2005
NuMI/MINOS	\$170 M	1999-2005
CDF + D0 IIb	~\$50 M	2002-2005

? The HEP program is increasingly dependent on large projects, apart from a new collider.

Project management

- ? The new project system for DOE projects has again increased the formality of oversight and the consequences of budget or schedule problems are more severe.
- ? We need to make sure that our approach to managing projects takes that into account.
 - ☐ Although many HEP projects have been on schedule and budget, some others were not.
 - We regularly undertake projects that push the limits of current technology.
 - ☐ We now need to set up a project that with high confidence will meet the schedule and cost baselines.
- ? We have to work hard to build the innovative projects that we need for our science within these guidelines.

Project Management

- ? We are taking steps to do improve project management.
 - ☐ A standing Technical Review Committees for each major project
 - ☐ Accelerator Advisory Committee for accelerator improvements
 - A new Office of Project Management led by Ed Temple that will conduct a cost, schedule, and management review before the DOE baselining review and subsequent Lehman reviews
 - ☐ New project accounting software

9 Weeks at Fermilab 3/18/02 - 5/25/02

- ? Major reviews of the entire ? Director's Reviews laboratory program
 - DOE Annual Program Review
 - **URA Visiting Committee**
 - HEPAP
- **Advisory Committees**
 - Physics Advisory Committee
 - **Accelerator Advisory** Committee
- DOE-SC (Lehman) Reviews
 - **LHC Operations**
 - NuMI

- - CDF/D0 Upgrades
 - NuMI (Primary Beam)
 - NuMI (Everything else)
 - **CMS**
- NLC
 - ☐ Machine Advisory Committee

Theoretical Particle Physics at Fermilab

?	The Fermilab theoretical particle physics group has an excellent, bro	ad
	research program.	

☐ The accelerator laboratories have a large responsibility for the training of theoretical particle physicists working on physics below the Planck scale.

? They have been active in planning the future.

☐ Snowmass Quigg (DPF co-chair), Lykken (organizing),

Carena, Mackenzie, Kayser (convenors)

☐ HEPAP Subpanel Lykken

☐ Run II workshops many

(Recent B Physics Workshop report arXiv: hep-ph/021071)

? They play a central part in the intellectual life of the laboratory.

Current Research

? Lattice gauge Bardeen, Di Pierro, Eichten,

Mackenzie, Juge, Kronfeld

? Supersymmetry Carena, Logan, Nierste, Rainwater

Perturbative QCD Ellis, Giele, Leibovich, Parke, Sullivan

? String Theory, D-branes, Carena, Lykken, Wang, Hill

Extra dimensions

? Flavor Physics Bardeen, Leibovich, Nierste

? Model building Hill, Wang

? Higgs Physics Ellis, Logan, Parke, Rainwater

? Neutrino Physics Barenboim, DeGouvea, Kayser, Parke

Visitor Program

- ? Frontier Fellows distinguished visitors
 - ☐ 2001-2 academic year: Quiros, Gottlieb, Lane, Baur, Braaten
 - \square Visits range from 3 to 9 months.
- ? Summer visitors
 - \Box 15 visitors for one month each
- ? Short term visits, collaborations, and workshop participants
- ? The Run II workshops benefited greatly from the active participation of these visiting theorists.

Lattice QCD

- ? A few quantities are known accurately: ?_s, m_c, m_b.
- ? Better lattice QCD calculations are needed to extract other Standard Model parameters from experiment:
 - ☐ The light quark masses
 - $\Box \quad f_B, B_B, f_{Bs}, B_{Bs} \quad 7 \quad V_{td}, V_{ts}$
 - ☐ Semileptonic decays 7 V_{cb}, V_{ub}
- ? Precise calculations of these quantities are needed to gain the full benefit from the experimental program :
 - ☐ BaBar/Belle, CDF/D0, CLEO-C, KTeV/NA48/E949
 - ☐ in the future BTeV/LHCb and CKM/KOPIO
- ? A new generation of computers is needed to make it possible for U.S. physicists to contribute to these advances.
- ? The High Energy Physics Community should strongly support this effort.

Lattice QCD

?	Funded SciDAC proposal: National Infrastructure for Lattice Gauge Computing
	□ R. Sugar PI
	☐ 3 labs, many universities
	☐ Most lattice gauge physicists in the US
?	Goals:
	☐ Common software platform
	☐ Three Terascale machines
	 Fermilab, JLab commodity clusters
	 Columbia/BNL QCDOC
?	80 Node prototype of Pentium III dual computers was completed here
	last year.
	\square in operation for physics
	☐ With SciDAC money, bring it up to 256 nodes in FY02, 512 in FY03

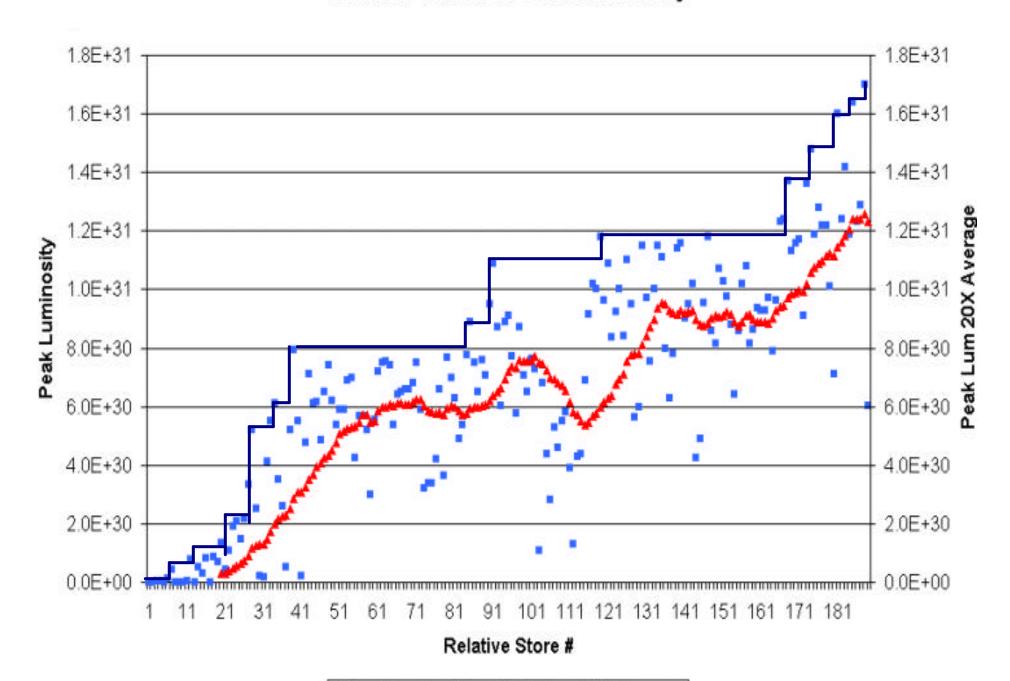
Science Education at Fermilab

- ? The Lederman Science Education Center is a nationally recognized resource.
 - Over 22,000 students and 8,500 teachers participated in programs.
 - □ 50 educators and 150 scientists provided program leadership.
 - ☐ Friends of Fermilab, Illinois, NSF, & others support programs.
- ? Saturday Morning Physics classes for high school students
- ? Summer research programs

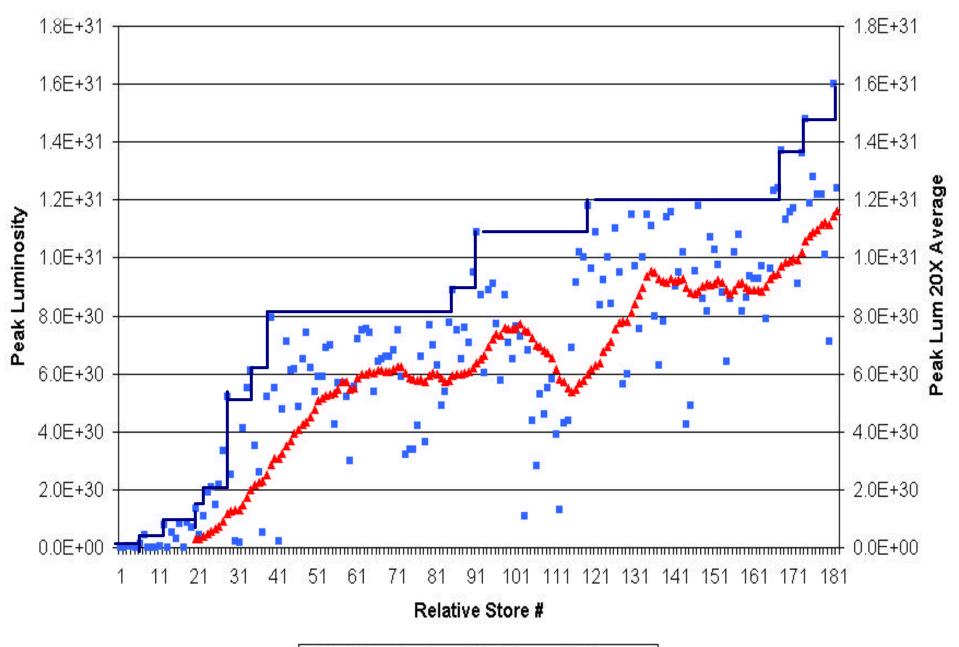
- ? QuarkNet developed into a remarkably successful program in a very short time.
 - ☐ It is an extremely good example of NSF-Fermilab collaboration.
- ? Fermilab acts as host laboratory for QuarkNet.
 - ☐ The Spokesperson (Marge Bardeen) and Project Director (Tom Jordan) are located here.
 - ☐ Fermilab Run 2 and the Dzero and CDF upgrades are key drivers of the QuarkNet program, providing research work and the prospects for exciting physics for teachers and students.
 - ☐ Fermilab hosts the Summer Institutes for lead teachers (a one week intensive/immersive program each June).
 - ☐ Fermilab coordinates program review and evaluation.

Communication and Outreach

- ? The HEPAP Subpanel report emphasized the importance of communication and outreach for the field of High Energy Physics.
- ? HEPAP has recently studied a Communication Communitee to coordinate these activities
 - ☐ Fermilab is host laboratory.
- ? Fermilab's Office of Public Affairs takes significant responsibility for communication about the field of High Energy Physics.
 - □ Snowmass
 - ☐ meetings of PA officers from international HEP labs



What we need to do in FY 2003


?	Ru	n II
		Keep improving luminosity.
		Operate the collider and the experiments efficiently.
		Keep offline computing capable of handling data production.
		Make great progress on upgrades.
?	Nei	utrino program
		Keep NuMI/MINOS construction on the new schedule.
		Operate MiniBooNE efficiently.
?	LH	\mathbf{C}
		Keep US-LHC and US-CMS projects on schedule.
		Get ready for the physics program.
?	Ac	celerator R&D
		Make good progress, despite budget, on Linear Collider R&D.
		Keep other programs lean and productive.
?	BT	eV & CKM
		Do R&D and engineering needed to be ready to start construction, with minima impact on other programs

Collider Run IIA Peak Luminosity

Collider Run IIA Peak Luminosity

Summary

? We have great opportunities for discoveries ahead.

- ☐ Exploring a new mass region in Run II
- ☐ An excellent program in the fast-moving area of neutrinos
- ☐ Unique experiments in particle astrophysics
- ☐ First look at the TeV scale with LHC
- ☐ Best of class flavor physics with BTeV and CKM and
- ☐ Prospects for hosting an international linear collider

We are working hard on improving collider performance.

The funding for High Energy Physics, and more generally Physics as a whole, is not sufficient to take advantage of the great scientific opportunity.

